
106 THE DECOMPOSITION SCHEME FOR DIRECT METHODS 

Note that since ( N ( k ) + N  ~k)) mod 2rr is a zero 
vector, the phase set P[P(~ + N (k)) - t -N (k)] is expec- 
ted to be nearly identical to ft. Analogously for N <k) = 
(N<~)+ N °)) mod 27r we can expect P(~+ N ~k)) to 
be very close to P I P ( I f +  N~))+ N °)] or to P I P ( I f +  
N °)) + N<~)]. It is useful to take heed of this fact in 
the implementation of step 5 of the algorithm and to 
generate sets of shifting vectors that are not only 
different but also 'independent'. 

centrosymmetric approximation) is presented by K[i~. 
(1992). The form of centrosymmetric approximation 
is derived from Cochran's (1955) distribution. 
Examples (of real structures) show that there are a 
number of independent shifting vectors that change 
about 50% of phases and keep about 90% of triplet 
invariants unchanged. Further numerical experiments 
show that we can expect similar results for other 
combinations of phases, for example, the traditional 
tangent formula or quartets. 

5. Application 

The decomposition scheme presented may be simply 
incorporated into the direct-methods routines. It was 
verified with real structures by the program system 
TRYMIN90 .  This system and a detailed definition 
of the form of the function (~ used here (the so-called 
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Abstract 

The accuracy of lattice-parameter measurements is 
defined by the actual error of Bragg-angle determina- 
tion. The total error in the angular position deter- 
mined (peak position) - corresponding to the Bragg 
angle - depends on the experiment itself (physical 
and geometrical aberrations) and on the method of 
calculation used. The aim of this paper is to find the 
best method of approximation of the measurement 
data to ensure a given accuracy - here, 1 part in 106 
- with the assumption that the technique and the 
method used for correcting the aberrations allow this 
accuracy. Considering some disadvantages of inter- 
polation and approximation with polynomials, com- 
monly used in practice, it is suggested the calculations 
are based on a model of the measured diffraction 
profile. In the present paper (paper I), desired proper- 
ties of such a model are discussed. Various possible 
descriptions of the diffraction profile - including 
popular 'shape functions' widely used in practice - 
are collected in a unified and standardized form and 
ch~ssified and analysed, with account taken of (i) 
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physical aspects, (ii) mathematical aspects, (iii) statis- 
tical aspects and (iv) practical aspects (applications), 
with premises resulting from the measurement 
method, the Bond method [Bond (1960). Acta Cryst. 
13, 814-818]. A special emphasis has been put on the 
best description of the moderate asymmetry charac- 
terizing the reflections from nearly perfect single 
crystals and on statistical properties of the model. 

1. The problem 

1.1. Precision and accuracy of the lattice-spacing 
determination 

To ensure a given accuracy IAdl/d of the lattice- 
parameter determination, the error, dO, in the Bragg 
angle, 0, cannot exceed that resulting from differenti- 
ation of the Bragg law, i.e. 

Id01 <-- (IAdl/d) tan 0. (1) 

For example, to achieve the accuracy of 1 part in 106 
of the dl~l-spacing measurement of a silicon single 
crystal when Cu Ka radiation is used, the error in 0 
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must be less than 1" (3 x 10 -4°) for the 444 interference 
(0=78.31 °) but cannot exceed 0.05" ( 2x10  -5°) for 
the 111 interference (0 = 14.25°). 

In brief, the actual (total) error d0 consists of a 
component,  d0E, dependent on the experiment (phys- 
ical and geometrical aberrations) and of a component,  
d0~, dependent on the method of calculation used 
for interpretation of the measurement data. The latter 
component alone is the subject of the present analysis, 
with the provision that the measurement technique 
and the method used would allow a desired accuracy, 
i.e. Id0~l<< Id01, so the problem is then to find a 
suitable method of calculation that would make the 
achievement of the desired accuracy possible, i.e. for 
which 

Id0~  + d 0 ~ l  < - (IAdl/d)tan 0. (2 )  

In (2) the additivity of the errors d0E and d0~ is 
assumed; this is an approximation commonly used 
in practice. It will thus also be used in the present 
paper. Another approach to the problem will be dis- 
cussed in § 6 of paper II (Galdecka, 1993). 

In the Bond (1960) method the Bragg angle 0 is 
determined from a series of counts h~ , . . ,  h,, recor- 
ded in the region of maximum intensity, as a function 
of angular values to~,. . ,  to,. The measured diffraction 
profile is usually approximated by an analytical func- 
tion using the method of least squares and then the 
peak position top, i.e. the position for which the func- 
tion achieves its maximum, is calculated. Measure- 
ments of intensity as a function of the angle to of 
rotation of the specimen are made twice, for two 
diffracting positions of the specimen, top~ and toP2, 
symmetrical in relation to the direction of the primary 
beam. The Bragg angle is then calculated from the 
formula: 

0 = 190 ° -  I to , ,  - to,21/21. (3) 

The twofold measurement causes aberrations (sys- 
tematic errors) that are typical for other arrangements 
(such as zero error, eccentricity and absorption) but 
which are eliminated experimentally in the Bond 
(1960) arrangement, while other aberrations (due to 
refraction, Lp factor and axial divergence, for 
example) must be removed by calculating appropriate 
corrections (for a complete list of such corrections 
see H~irtwig & Grosswig, 1989; Galdecka, 1992). 

1.2. The need for  a model o f  the recorded diffraction 
profile 

Let us consider now the total error connected with 
calculations, d0c [(2)]. It consists of a statistical part 
80c and a systematic part, the bias, AOc, 

dO~ = AOc + 80~. (4) 

Later, since subsequent formulae will relate solely to 
the method of calculation, we shall dispense with the 

index c. The twofold measurement used (cf. § 1.1) 
leads to a reduction of the standard deviation or(0) 
of the Bragg angle determined, in relation to the 
standard deviation or(top) of a single peak position, 

2'/2or(top)/2, (5) 

where or(top) -" or(top1) -~ or(top2), but it does not lead 
to a reduction of a possible bias that might result 
from an incorrect model of the diffraction profile used 
in calculations, since the two profiles recorded are 
symmetrical to each other in relation to to = 0. Thus 
the two biases would sum to 

IA01 = I ato.2 + A t o . , l / 2 :  IAto.I, (6) 
so, in terms of absolute values, the bias of the Bragg- 
angle determination is approximately equal to the 
bias Atop of the peak-position determination. 

There are two basic purposes of approximation of 
the measurement data by a continuous analytical 
function for accurate peak-position determination: 

(a) reduction of the statistical errors of observa- 
tions (recorded counts); 

(b) calculation of the expected (unbiased) values 
of intensities at intermediate points between measure- 
ment points. 

When the total error in the peak position, 

dtop = Atop + 6top, (7) 

is to be reduced, two different approaches are used 
in relation to its statistical part ~O,)p and its systematic 
part Atop. It is relatively easy to reduce the statistical 
error by increasing (i) the number of measurement 
points, (ii) the number M of repetitions of a given 
measurement, (iii) the number of counts recorded (by 
increasing the primary-beam intensity or the counting 
time) or (iv) by a suitable choice of collimation condi- 
tions (Urbanowicz, 1981a, b). The bias Atop is 
independent of the above factors and, if neither rec- 
ognized nor corrected, remains in the results obtained. 
The essential problem for the high-accuracy lattice- 
parameter determination is therefore to find the 
proper model of the diffraction profile to provide the 
results free from any bias, or to estimate and reduce 
the bias, and, more generally, to find criteria of cor- 
rectness of a model considered. 

From the point of view of applications, what is 
needed is a possibly simple and universal function 
capable of approximating an arbitrary collection of 
measurement data. It is, however, clear that the func- 
tion cannot be an interpolative function and that even 
rational spline functions, used succesfully in Rietveld 
refinement (Hepp & Baerlocher, 1988), were useless 
for the present task. Such descriptions, based on 
actual rather than expected values of intensity, are 
not likely to satisfy requirements (a) and (b) above. 
The function to be used for accurate measurements 
must represent a model of the diffraction profile, 
which, according to suggestions of Oatley & French 
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(1982), who used the Bayesian three-stage regression 
model, should have well defined mathematical and 
statistical properties. 

A polynomial, thought of as an expansion in a 
power series about the peak of an unknown function 
describing the real diffraction profile, could be, in 
principle, treated as a 'model' .  However, assumptions 
that would accompany the expansion (which is also 
an element of the model) are difficult to reconstruct 
in practice. This causes the results of polynomial 
approximation to be strongly dependent on the scan- 
ning range and the degree of the polynomial (cf. 
Wilson, 1965; Thomsen & Yap, 1968; Grosswig, 
J~ickel & Kittner, 1986). To obtain accurate results, 
the scanning range and/or  the degree of the poly- 
nomial should be carefully selected, based on reason- 
able criteria resulting from a statistical model of 
recorded counts (discussed in § 2.6 below). Thus, 
polynomial approximation alone cannot be treated 
as an objective and universal method. We shall return 
to the problem in paper II (Galdecka, 1993). A further 
disadvantage of polynomials, in various applications, 
is that, in contrast with some 'shape functions', their 
coefficients have neither a physical meaning nor a 
simple connection with the parameters of the 
measured profile (i.e. the peak coordinates and the 
half-widths). 

On the other hand, there is a variety of rather simple 
'shape functions' used for an analysis of the diffrac- 
tion profiles recorded both in powder diffractometry 
(reviewed by Young & Wiles, 1982) and in single- 
crystal diffractometry (Urbanowicz, 1981 a; Oatley & 
French, 1982). But can the popular shape functions 
be treated as models of the diffraction profile? Are 
these descriptions capable of introducing new 
qualities to the problem ? What criteria should be used 
to select the best function? 

In order to answer the questions it is useful to 
consider some basic physical premises to ensure 
objectivity and generality of description. Further- 
more, as the function considered should serve as a 
tool for calculations, it is advisable to analyse its 
important mathematical and computational features. 
For final evaluation of correctness of description, 
some statistical criteria are needed, based on a statis- 
tical model of recorded counts. Let us discuss the 
various aspects of descriptions available. 

2. Descriptions of  the diffraction profile 

2.1. Assumptions 

Since present considerations relate to the Bond 
(1960) method, the following prerequisites and 
assumptions will be taken into account. 

(1) An to scan is used rather than a 20 or to/20 
scan, as already mentioned in § 1.1 above. This 
implies a constant background (Alexander & Smith, 

1962; Kheiker, 1969). Since, for the purpose dis- 
cussed, the diffraction profile is recorded within a 
limited scanning range (not wider than, say, two 
half-widths), it is justifiable to assume that the func- 
tion used as a model of the diffraction profile will 
describe the profile together with its background. 

(2) Separate diffraction profiles are recorded 
rather than the whole diffraction pattern (used, for 
example, in powder diffraction). The dependence of 
parameters of the profile (such as the half-width or 
a coefficient of asymmetry) on the Bragg angle is thus 
not important in the appropriate descriptions. 

(3) Recorded diffraction profiles show, as a rule, 
a moderate but appreciable asymmetry that must be 
taken into account in their descriptions. Since func- 
tions describing the diffraction profile are usually 
given in an idealized symmetric form, the present 
discussion will contain two stages: 

(i) description of the symmetric profile; 
(ii) corrections for asymmetry. 

2.2. A standardization of descriptions 

To discuss the shape of the diffraction profile h(to) 
separately from the actual parameters of the profile 
- the maximum intensity H, the peak position tOp and 
the half-width toh - the profile can be described using 
the following standarization [used by Thomsen & 
Yap (1968) and generalized by the author of the 
present paper]: 

h(to) = Hv(u)/Vp, (8) 

u = u~ + w ( t o -  to~)/toh,  (9) 

where v(u) is a function describing the shape of the 
profile (the shape function), up and Vp are coordinates 
of its peak position and w is its half-width. Usually, 
in the case of simple symmetric shape functions, 
up=O, v p = l  and w=2 .  

2.3. Physical model - the substance of description 

The X-ray diffraction profile can be accurately 
described using complex convolution formulae. In 
the description, the influences of various physical and 
apparatus factors, causing broadening and/or  asym- 
metry of the measured profile in relation to the 
original profile corresponding to the wavelength dis- 
tribution, are taken into consideration (see, for 
example, Klug & Alexander, 1959, and references 
therein). Such a specific description usually relates 
to one particular measurement (radiation, crystal, 
order of interference, measurement device etc.). Thus, 
the 'complete physical model' of the diffraction 
profile is a hypothetical idea rather than an available 
formula; there is no simple analytical function that 
could be used as a physical model valid for each case. 
However, in some particular cases such simple 
descriptions are available. 
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If the crystal is of high perfection and the influence 
of the device is to be neglected, the complete convo- 
lution formula might be approximated by the Cauchy 
function 

v ( u ) = l / ( l + u  2) (10) 

due to the wavelength distribution. The shape of the 
spectral line [(10)] results from the classical theory 
of an electronic simple harmonic oscillator with elec- 
tromagnetic damping (see, for example, Compton & 
Allison, 1935), and the half-width of the spectral line 
w, is a function of physical constants. The half-width 
of the resultant diffraction profile, toh [cf. the stan- 
dardization given by (9)], for a given Bragg angle 0 
can be approximated by the half-width toy due to the 
wavelength distribution, 

toh=tos=W~, (tan 0)/A. (11) 

If, conversely, the contributions of all (numerous 
enough, say K) factors in the distribution are 
approximately equal and have finite variances, the 
profile may be described, according to the central- 
limit theorem, by the Gaussian function 

v(u)  = exp ( - u  2 In 2) (12) 

and the half-width toh of the resultant profile is the 
square root of the sum of squares of half-widths toh, k 
of respective factors, 

2 (13) t o h  ~ t o  h , k  • 

k = l  

In applications, the Gaussian function is considered 
to be more suited for mosaic crystals than for perfect 
crystals. 

Equations (10) and (12) can thus be treated as two 
opposed extreme cases of one general convolution 
model. The X-ray diffraction profiles recorded are, 
as a rule, intermediate cases, and can be sometimes 
described using relatively simple 'physical' models, 
in which the effect of some selected factors is con- 
sidered. The effect of the in-plane collimation on the 
shape of the diffraction profile, for example, can be 
described by the model function (Urbanowicz, 
1981a) 

v ( u ) = ( u + u l ) t a n  -l ( u + u l ) + ( u - u l ) t a n  -1 ( u - u l )  

- ( u +  u2) tan-l(u + u2) 

- ( u  - u2) tan -1 ( u  - u2) 

- I n [ 1  + ( u + u ~ ) 2 ] / 2 - 1 n [ l  + ( u - u ~ ) 2 ] / 2  

+ In [ 1 + (u + u2)2]/2 + In [ 1 + (u - u2)2]/2, 

(14a) 

where 

u l=(d l+d2) /L2 to : ,  u2=ldl -dEl /LEtof ,  (14b) 

dl and d2 are widths of the collimator slits, L2 is the 
collimator length and 

u = 2( to - top ) / tof. (14c) 

Note that the standardization in the case relates to 
the parameters of the original profile and not to those 
of the final profile (cf. § 2.2). 

The effect of collimation may also be described 
using a simpler, and thus less accurate, model 
(Urbanowicz, 1981a): 

v ( u ) = u 4 [ t a n  -1 ( u + u 3 ) - t a n  -l ( u -u3 ) ] ,  (15a) 

where 

u3 = ( d~ + d2)'/2/L2tol, 
(15b) 

u4 = 2d, d2/ ( d~ + d~) '/2 t2tof. 

The above two models have been derived with the 
assumptions that the crystal is of high perfection, the 
in-plane collimation used for controlling the primary- 
beam intensity does not introduce any appreciable 
systematic errors and the influence of other apparatus 
functions is to be neglected. The functions are capable 
of describing only a particular class of experimental 
profiles. They do not include the limiting Gaussian 
form [(12)]. This is, however, the best class of 
diffraction profiles recorded in terms of accurate 
lattice-parameter measurements. One cannot expect 
high-accuracy results if the crystal is imperfect and 
the apparatus functions cause a remarkable deforma- 
tion of the original profile. 

The above equations (10) and (11), (12) and (13), 
(14a), (14b) and (14c), (15a) and (15b) are the only 
simple mathematical formulae known to the author 
that describe the shape of a single-crystal X-ray 
diffraction profile by means of parameters that have 
defined physical meanings. Another example of such 
a physical model, used in neutron powder diffraction, 
is that introduced by Ikeda & Carpenter (1985). 

If some partial distributions of the complete con- 
volution model have the shape of the Cauchy function 
while others are more likely to be of Gaussian shape, 
one can accept the Voigt function as a model of the 
diffraction profile (Langford, 1978). This is a concep- 
tual rather than a physical model (as the Gaussian 
function itself), unless the parameters (the half- 
widths, for example) of the partial distributions are 
expressed by means of physical or geometrical 
(apparatus) quantities. In the simplest case, when the 
Cauchy function in the model corresponds to the 
wavelength distribution entirely [compare with (10) 
and (11) and the comments on them], the convolution 
model can be presented in the form 

oo 

t)(U)= ~ ( l+u '2 )  -I e x p { - [ ( u - u ' ) / r ] 2 1 n 2 } d u  ', 
- o o  

(16a) 

where u is given by (14c), r is the ratio of the 
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half-width of the Gaussian function, tog, to that of 
the Cauchy function, toy, 

r = tog~toy. (16b) 

2.4. Mathematical  models - approximating functions 

The idealized physical models of collimation, taken 
by way of example in § 2.3 [(14a), (14b), (14c) and 
(15a), (15b)], well described the mechanism of colli- 
mation but were insufficient for an interpretation of 
a given set of experimental data. To explain the 
differences between the real and the calculated 
diffraction profiles, such factors as the real distri- 
bution of the tube-focus emissivity and the actual 
inaccuracy in the adjustment of the source and the 
collimator had to be taken into account (Urbanowicz, 
1981b). After the introduction of these factors, the 
description (available this time in a numerical rather 
than analytical form) became much more complex 
than before. On the other hand, the measured profiles 
and the idealized profiles did not, in principle, vary 
in shape. Integration, used in calculations of the 
convolution product, causes the resultant function to 
be much smoother than before. The differences were 
in their parameters (peak position, peak height, half- 
width) and their asymmetry, which did not occur in 
the idealized case. As will be shown in § 2.5 below, 
the asymmetry characterizing real diffraction profiles 
can be expressed in a simpler way (analytically) than 
v/a the complete (physical) convolution model. Thus 
what is needed for the purpose of the present paper 
is a function that approximates the physical model, 
including all known and important mathematical and 
statistical premises. 

The models discussed in § 2.3, equations (14), (15) 
and (16), are examples of functions with shapes 
defined by parameters related to physical and 
apparatus quantities. Yet such functions, even if a 
correction allowing for asymmetry (discussed in § 2.5) 
is used, are unserviceable for approximation of an 
arbitrary recorded profile when preliminary values of 
the physical parameters are unknown. Therefore there 
is a tendency towards using functions with shapes 
defined by parameters that do not have physical inter- 
pretations. Some such functions, for example the 
Voigt function [(16)], are capable of expressing the 
continuous change of shape from the Cauchy function 
t o  the Gaussian. It should be emphasized that, while 
making the transition from the physical to a mathe- 
matical model, the 'complete physical model' must 
still be remembered. In this case, the complete 
physical model is represented by a collection of 
corrections for respective aberrations. The correc- 
tions, being a result of detailed analysis of individual 
factors of the complete convolution model, are 
reported elsewhere (see references at the end of § 1.1 ). 

In practice, two fairly simple shape functions are 
used that include a Cauchy function and a Gaussian 

function as the extreme cases. As has been shown 
(David, 1986; see also Galdecka, 1993, § 4.2), the 
Voigt functions - well founded theoretically but 
inconvenient for applications - can be well apprOXi- 
mated by pseudo-Voigt functions, being sums of the 
two limiting functions, 

v ( u ) = c / ( l + u 2 ) + ( l - c ) e x p ( - u 2 1 n 2 ) ,  (17a) 

where c is an adjustable parameter that defines the 
shape; c = 1 relates to the pure Cauchy shape, c = 0 
relates to the pure Gaussian, so the limitation 

0 < - c - 1  (17b) 

is necessary from the point of view of the physical 
model. 

The second possibility is use of the Pearson VII 
functions, borrowed from a system of frequency 
curves (Elderton & Johnson, 1969), which have the 
form 

v ( u ) = ( l + a u % - " ,  (18a) 

where 

a = 2 ' / " ; - 1  (18b) 

and m is a parameter that defines the shape, the 
so-called decay rate; m = l  corresponds to the 
Cauchyian shape, and m =oo corresponds to the 
Gaussian shape, so the limitation 

1-<m-<oo (18c) 

is physically justified. 
All the functions, being physical models of the 

diffraction profile (see §2.3), and appropriate 
approximating functions considered here (§ 2.4) are 
characterized by the common features: 

(a) continuity; 
(b) non-negativity; 
(c) showing one maximum; 
(d) having two inflection points at their slopes; 
(e) having v values that tend to zero for [u[ tending 

to infinity. 
Moreover, all functions listed in §§ 2.3 and 2.4 are 

symmetric, which is the first approximation in the 
description of the diffraction profile. There are, cer- 
tainly, other possible distributions with the features 
listed above (further examples will be given in § 2.5 
below). Ordinarily, authors who use particular shape 
functions do not give the motivation for their choice. 
The functions can probably provide a good fit to 
actual observed data. But are the shape functions 
capable of approximating the complete physical 
model, and hence an arbitrary set of data, with an 
adequate goodness of fit? What criteria should be 
used when selecting the description? The agreement 
between selected shape functions and the models 
discussed in § 2.3 will be tested in paper II (Galdecka, 
1993). 
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2.5. Asymmetry - further specification of  the 
description 

If at least one of the distributions that are the factors 
of the final convolution product is asymmetric, the 
resulting diffraction profile is asymmetric. Illustrative 
examples are given by Berger (1986a). One can distin- 
guish the following sources of asymmetry of the 
diffraction profile recorded in the Bond method: 

(a) intrinsic asymmetry of a separate spectral line; 
(b) asymmetry that results from the nonlinear 

transition from the A scale to the 0 (or to) scale (it 
has been found by the author that this asymmetry is 
to be neglected since the profiles recorded are rela- 
tively narrow); 

(c) asymmetry that is the result of overlapping 
reflections; 

(d) asymmetry of some other physical functions 
and apparatus functions, such as the Lorentz-polariz- 
ation factor, the absorption profile, the tube-focus 
emissivity and the vertical (axial) and horizontal (in- 
plane) collimation. 

There are various mathematical methods used for 
description of the resultant asymmetry of the final 
diffraction profile. These are: 

(i) a sum of several symmetric functions with 
different peak positions; 

(ii) a simple asymmetric multiplier; 
(iii) the so-called split functions; 
(iv) some other asymmetric functions. 
In case (i), a sum of two or more superimposed 

symmetric functions with different peak positions, the 
distance between the peaks being treated as an adjust- 
able parameter, can be used as an entirely mathemati- 
cal method for expressing the asymmetry, irrespective 
of the origin ofthe latter (Hecq, 1981; Howard, 1982). 
A sum of two or more symmetric functions when the 
distance(s) between the peaks is (are) defined by the 
wavelengths, structure and interference order could 
be treated as a physical model of the diffraction 
profile. However, such descriptions are usually com- 
plex and hence inconvenient for the present task. 
Berger (1986b), for example, used a sum of four 
profiles to describe the spectral distribution alone, 
corresponding to KOtl-KOt 2 radiation, and Howard 
(1982) needed a sum of five components to approxi- 
mate the complete convolution model (in neutron 
powder diffraction). 

For case (ii), another example of a description of 
asymmetry is a simple asymmetric multiplier, P(u),  
such that 

v (u )=P(u )v~ (u ) ,  (19) 

where vs(u) is an idealized symmetric profile and 
v(u) is the resultant asymmetric shape function. 

In particular, a quadratic function modified by the 
function 'sign' is used, 

P(u)  = 1 - s ign  (u)~ou 2, (20a) 

where ~o is a coefficient of asymmetry. This form of 
multiplier is a result of physical considerations and 
expresses the effect of the vertical (axial) divergence 
(Klug & Alexander, 1959; Rietveld, 1969). [In more 
accurate calculations the axial divergence is represen- 
ted by a 'truncated exponential function' (Enzo, 
Fagherazzi, Benedetti & Polizzi, 1988).] Originally, ~0 
was proportional to tan 0; here, according to assump- 
tion (2) in § 2.1, the dependence on 0 is not taken 
into account. 

For moderate asymmetry, a simpler linear factor 
(Thomsen & Yap, 1968), 

P(u)  = 1 + sou, (20b) 

may be sufficient in (19). The description could be 
treated as the first approximation of a more complex 
description of asymmetry dependent on various fac- 
tors if the underlying symmetric profile vs(u) is given. 
If so, an assumption would be needed that either the 
asymmetry is small enough or the scanning range is 
narrow enough, viz ~u << 1, to dispense with higher 
terms of the supposed expansion. 

Further examples of such asymmetric factors are 
given by Ersson (1979). These are, however, more 
complex and more specific, so they will not be con- 
sidered here. 

For case (iii), a practical rather than a theoretical 
approach to the description of asymmetry is the use 
of so-called 'split functions' consisting of two 'halves' 
of functions of the same shape but different half- 
widths, set in such a way (Thomsen & Yap, 1968) 
that the full half-width is equal to 2: 

v (u )=vs (u*) ,  (21a) 

where 

u* = u/[1 +X sign (u)] (21b) 

and h' is a coefficient of asymmetry, defined by 

X = ( u 2 + u l - 2 u e ) / ( u 2 - u , ) ,  (21c) 

where u~ and u2 are given by 

v(ul) = v(u2) = vp/2, ul < u2. (21d) 

Sometimes two different values of the parameter 
defining the shape (for example, m for a Pearson 
VII) are used for each 'half '  of the split functions 
(Brown & Edmonds, 1980; Toraya, 1986). In any case, 
descriptions consisting of such segments defined by 
different formulae and/or  parameters are simple 
examples of spline functions, already mentioned in 
§ 1.2. 

A disadvantage of some simple corrections for 
asymmetry (e.g. an asymmetric multiplier or a pair 
of split functions) is that they can introduce some 
formal 'defects' to resultant physical or mathematical 
models. Functions defined by (19) and (20a) or (19) 
and (20b) may take negative, and hence physically 
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unrealistic, values. The defect is part icular ly trouble- 
some when the functions are to be used in calculat ions 
of  integrated intensities (for  a more detai led dis- 
cussion, see Howard ,  1982). To meet the aim of  the 
present  paper ,  the correct descript ion of  the profile 
near  its peak is o f  p r imary  importance.  The analysis 
of  funct ions defined by (19) and (203),  and by (213) 
and (21 b), reveals that  their  second derivatives, v " ( u ) ,  

at the peak (u = 8, J,~]-~0) are discont inuous and 
depend  on the sign of  the argument .  Namely ,  in the 
case of  a modified quadra t ic  factor  [(19), (20a)] ,  

v"(8) = v " ( 0 ) - 2 t p  sign (($) (22) 

and for a pair  of  split funct ions [ (21a) ,  (21b), (21 c)], 

v " ( ~ ) - - v " ( O ) / [ l + x  sign (($)] 2. (23) 

u.- 6 up up+& up-6 up up+6 

Iv(u) ~ : u i t v(") i" 
.oo : , ,.o i i 

i - ~  , ,,,,2 

3 
'(u) 

7 , 

- 1 5  - 1 0  - - ~ i - / ; 1 0  u 

iv!:,- , 

0.5 .5 

- 1 5  - - 5 10 15 u - 1 5  - 1 0  - 5  0 5 10 15 u 
sg n ((p)/~/]~- r 

(c) (d) 

Fig. 1. Various asymmetric shape functions obtained from a basic symmetric function (a Pearson VII function) by the modifications: 
(a) a sum of two symmetric functions of one shape and different peak positions (d is the distance between the peaks); (b) a linear 
multiplier; (c) a quadratic multiplier; (d) a pair of split functions. The plot of the second derivative v"(8) at the peak, u = 8, 82<< 1, 
is shown in the upper right comer of each diagram, y~ is the truncation level of the approximated experimental data. 
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As shown in Fig. 1, the discontinuity is particularly 
remarkable in the case of a pair of split functions 
(Fig. ld) .  The defect mentioned by Thomsen & Yap 
(1968), may lead [and it does, as will be shown in 
paper II, § 4.3] to a systematic error (bias) of the 
peak-position determination. Another defect of a 
model may be an increase of intensity values for l ul 
distant from the peak and tending to infinity. An 
example is shown in Fig. l(c),  which relates to a 
modified quadratic asymmetric factor, and, as may 
easily be proved, occurs when the parameter m of 
the underlying Pearson VII function is less than 1 
(here, m = 0.78). 

For case (iv), descriptions that avoid the drawbacks 
mentioned above are derived by Johnson (1949). 
Using the notation of the present paper (and after 
some transformations), the distributions can be pres- 
ented in the form 

v(u) = f ' ( u )  exp {-0.5B2[1 + ef(u)]2}, (24a) 

where B 2 and e are parameters (the latter, in the 
present notation, expressing the asymmetry), f ( u )  is 
an arbitrary simple enough continuous and non- 
decreasing function (a kind of 'cumulative density 
function'; see §2.4); its first derivative, f ' (u) ,  
corresponds to a 'probability density function'. 

Then f ( u )  can be defined by 

f ( u ) = ~ f ' ( u ) d u .  (24b) 

On the other hand, f ' (u ) ,  if symmetric, could be 
treated as vs(u) in (19), 

f ' ( u ) = v , ( u ) .  (24c) 

Two examples of Johnson (1949) distributions (given 
in the original paper) that the functions 

f ( u ) = l n [ u + ( u 2 +  1)1/2], 

s o  

f ' (u )  = (1 + u2) -1/2, (24d) 

and 

f ( u ) = s i n h  u, so f ' ( u )=cosh  u (24e) 

were applied by Oatley & French (1982) for approxi- 
mation of particular experimental data (intensity 
values for various proteins). The first of the functions 
is shown in Fig. 2. Their drawback is (as will be shown 
in paper II, § 4.2) that they are not directly related 
to the physical convolution model discussed in § 2.3. 

There is, of course, a possibility of using some other 
functions f ' (u)  = v~(u), such as a pseudo-Voigt or a 
Pearson VII function, to construct further distribu- 
tions defined by (24a). A particular problem may 
occur when the corresponding integral [(24b)] is not 
available in a simple analytical form. Then an 
approximate expression may be used. For moderate 
asymmetry, i.e. eu<< 1, one may put 

ef(u)~-eu. (24f) 

The final version of the best asymmetric distribution 
will then have the form 

v(u)=v~(u)exp[-O.5B2(l+eu)2], (25) 

where v~(u) is given by (17a) or (18a). 
Results of approximation by means of the function 

given in (25) are almost identical with those obtained 
using a linear factor [(19), (20b)] for narrow scanning 
ranges (differences in the peak position, its standard 
deviation and the R factor do not exceed 1%). The 
use of the exponential factor [(25)] allows the resul- 
tant description, free from formal defects, to be used 
within a large range of arguments. 

For applications, the range of values of the 'macro- 
scopic' coefficient of asymmetry, X [(21c), (21d)], 
appropriate for a given formula may be important. 
Relations between respective parameters of asym- 
metry used in the descriptions discussed, s ¢, ~0 and e, 
and the macroscopic parameter, X, limitations for the 
parameters and permitted ranges of arguments are 
given in Table 1. 

2.6. The statistical component as a criterion of correct- 
ness of a model considered 

Any correct model of the measured diffraction profile 
should include, in accordance with the suggestions 
expressed by Oatley & French (1982), a defined statis- 
tical part, describing statistical errors of recorded 
intensities, in addition to its substantial 'deterministic' 
part. The statistical information might then be used 
for testing the correctness of the deterministic mathe- 
matical description. 

~v(u) u. - 6 u. u,, + 6 
1.0 ~ ] ;  u 

Fig. 2. An asymmetr ic  Johnson distribution [(24a)].  The plot of  
the second derivative v"(u) at the peak, u = 6, 62<< 1, is shown 
in the upper  right corner. 
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Table 1. Relations between coefficients of  asymmetry used in various descriptions and the macroscopic parameter 
of  asymmetry, x, under the assumption that the shape Vs( u ) of  the underlying symmetric profile is a Cauchyfunction 

Descript ion o f  
asymmetry  

v(u) 

(l + ~u)vAu) 

[1 -sign ( u)~vu2]v~( u ) * 

exp {-~[l - (1  + e u ) 2 } v A u )  

Resultant  'macroscopic '  
coefficient o f  asymmetry,  X, 

for  v, = (1 + u2) - t  

X(~) = ~[3s¢2+2(1 + sc2)t/2+2] -I/2, ~ theoretically 
unlimited, Jimoo Ix(¢)l <- 0.58 

X(¢) = - 1 / ¢  + sign(¢)(l/~p 2-1)  ~/2 for ¢ # 0, 
iim x(~)=o,l~ol_<l, Ix(~)l<_l 

I¢1~0 
x(~) --- -~(1 - 1.15~2)/2, I~1 <- 0.54, Ix(~)l <- o.a8 

* Note that the second derivative is discontinuous at the peak. 

The range o f  u 
values for  which 

v(u)>-O 
u6 [-1/~,oo) for ¢ > 0  

uE (-cO,-1/sO] for ~:<0 

uc( -oo ,  - t / z )  f o r ~ > 0  
u~ [-I~1-'/~,o~) for ¢ < 0  

u~(-~,oo) 

One can consider a given model to be correct if: 
(i) the differences between calculated intensities/~ 

and observed intensities hi have random character, 
i.e. the expected values of the differences are equal 
to zero: 

E ( / ~ - h , )  = 0, i = l , 2 , . . . , n ;  (26) 

(ii) the expected values of the squares of the 
differences are equal to the variances of the recorded 
counts: 

E [ (/~i - h,) 2] = 0"2(hi). (27a) 

Moreover, in the case of appreciable correlations 
between measurements, there is the relation: 

E [ ( h i - h i ) ( ~ - h j ) ] = c o v ( h i ,  hj), i # j ,  (27b) 

where cov (hi, hi) are covariances of the measurement 
intensities. 

The above requirements can be combined with such 
statistical parameters, defining the goodness of fit, as 
the discrepancy factor, 

R =  ~. ~ w , j ( ~ - h i ) ( ~ - h j )  ~. wi, jhihj 
i=1  j = l  / i = l  j = l  

(28) 
or the mean deviance 

i = l  j = l  

where wi.j are the weights of observations; 0"2 corre- 
sponds to the variance of observation of unit weight. 

Knowledge of individual variances and covari- 
ances of the recorded counts may be used for estimat- 
ing the expected mean variance, t~2, and the expected 
discrepancy factor, R, which should be obtained in 
the course of approximation, when the approximating 
function is a 'model' .  It can be proved that, if the 
weights matrix is the inverse of the variance-covari- 
ance matrix and the requirements given by equations 
(26), (27a) and (27b) are satisfied, then [cf., for 
example, Hamilton (1964, § 4.4)] 

i l j = l  

(29b) 

s o  

E(0.2) = &2. (29c) 

To introduce the correct weights, individual variances 
and covariances must be known or assumed. The 
recorded counts obey Poisson statistics, hence 

0 . 2 ( h i )  = hi, o ,  (30a) 

cov(h , ,h j )=O,  i # £  (30b) 

where hi.o is the expected value of hi. 
In the case when the proper weighting scheme is 

used, i.e. wi, i = 1~hi.o, wia =0,  the expected value of 
the R factor is 

E ( R 2 ) = ( n - m ) d  "2 hi (30c) 
i 1 

and the mean deviance is given by (29c). 
In the general case, variances of recorded counts 

can be greater than those described by (27), and some 
correlations between measured intensities may occur 
(Galdecka, 1985), 

2 t2 0"2(hi) = hi, o + h2o0.2(I)/12 + 0. (toi)h, , 

-p<_ i<_p, (31a) 

c o v ( h ,  hj)=cov(to, ,%)h'ih~,  i # h  (31b) 

where 2 p +  1- -n  is the number of points; 0.(1)/1 is 
the instability of the primary beam; h~=h'(~oi), 
0.2(~oi) =cov  (roi, ~oi) and cov (w.  %) are the vari- 
ances and covariances of the angular positions 
defined by 

cov (w,, ~oj)= (1 + ijlp2)0.2(~o)RI2 

+ p( 1 - ij/p2) 0.2(A,,, )/2 

- l i  -jl0"2( ao ) /2 ,  - p <- i,j <-- p, 

(31c) 

where 0":(tO)R characterizes the angle-reading error 
and 0"2(A0,) characterizes the error in angle setting 
(positioning). 

When individual variances (and covariances) are 
unknown but an approximate level of statistical errors 
is given, defined by the mean variance t~ 2 of recorded 



EWA GALDECKA 115 

counts within a given scanning range, uniform 
weights, wi, i = 1, wi.j = 0 (i # j )  may then be used. With 
the assumption that 

or2(hl)  ~ o r 2 ( h 2 ) - ~ . . . ~ - o r 2 ( h n ) ~ - ~ 2 = ( 1 / n )  ~ or2(hi),  

(32) 

one can show (Rao, 1982) that 

E[~ (h , -h i )2 ]=(n -m)~  2. (33a) 

When the approximating function is a model of the 
diffraction profile, the calculated mean deviance o'2 
[(29a)] will provide an unbiased estimator of the 

-'2 mean variance trh of observations, 

E ( t r ~ ) = E [ ~ ( h , - h ~ ) 2 ] / ( n - m ) = ~  2, (33b) 

and the square of the calculated R factor will be 
equal to its estimated value, given by 

E(R2) = E  0.2(h,)/~ h2=(n_m)d.2h/~ h2= ~2. 

(34) 

Thus, the equality tr 2-- ~2 (or R 2=/~2) may be a 
criterion for acceptance of the model considered. 
Statistical tests, such as the X 2 test (for comparing 
the calculated and the expected o2 o r  R E) or the F 
distribution for two variances (for comparing pairs 

2 2 2 of calculated values, trh.l and or RI and R~ Orh,2 
obtained for different models), are helpful in deciding 
whether to accept or reject a model considered. Fur- 
ther details connected with the use of the X 2 test will 
be given in paper II, § 2.2. 

2.7. Practical aspect - applications 

From the point of view of applications, the function 
to be used for approximation of the measurement 
data should be: 

(i) universal, capable of describing every possible 
shape of the measured profile (here obtained using 
the Bond method),  

(ii) convenient for calculations. 
Moreover, with regard to the problem of the present 

paper, results of the peak-position determination 
should be unbiased, independent of the scanning 
range (stable) and undispersed (showing as small as 
possible variance). 

One may ask why, for the problem in question, one 
description used is a 'physical model'  or gives a good 
approximation to the model, while another only pro- 
vides a good fit to a given set of data? What are the 
consequences of some formal 'defects' of descriptions 
discussed in § 2.5? Is it necessary to base the good- 
ness-of-fit criteria on a statistical model of recorded 
counts? 

As will be shown in paper II (Galdecka, 1993), 
each of the elements of description have some 
influence on the accuracy of the peak-position 

determination. On the other hand, the accuracy of 
results obtained may be treated as an additional 
criterion of correctness of a model considered, apart 
from the statistical criteria discussed in § 2.6. 

The author is indebted to Professor A. J. C. Wilson, 
FRS, for stimulating suggestions, critical reading of 
the manuscript and valuable discussions. The author 
is also grateful to the referees for helpful suggestions 
on the presentation. This work is supported by grant 
2041591 1 from the Polish State Committee for 
Scientific Research. 
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